If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+(5x)^2=16
We move all terms to the left:
x^2+(5x)^2-(16)=0
We add all the numbers together, and all the variables
6x^2-16=0
a = 6; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·6·(-16)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{6}}{2*6}=\frac{0-8\sqrt{6}}{12} =-\frac{8\sqrt{6}}{12} =-\frac{2\sqrt{6}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{6}}{2*6}=\frac{0+8\sqrt{6}}{12} =\frac{8\sqrt{6}}{12} =\frac{2\sqrt{6}}{3} $
| -3=-1/3a | | 8b+23=111 | | 15x+3=2(x+3) | | -5.1=z=6.5 | | 10+3x=90 | | 1.5+x/8=-11.3 | | 3.2x+(-3)=5 | | 4=t+11.5+t | | 9p-6p-2p+3p+2p=18 | | 6m-8=56 | | 2^x=1.3 | | 35-x=185 | | 2/x+1/3x=7/6 | | 14.2=0(-5.8+t | | V=63-8v | | 5(x-4)+2=14 | | 20+3v=8v | | 4y-4=12y-6 | | -14.3=-14-3d | | 0.26x=37 | | -x=0.13 | | 4r+r+5=60 | | x-7+14=22 | | w+13=11w−7w+13=11w−7. | | 21=v/4+11 | | w+13=11w−7w+13=11w−7 | | -1/2=2/5v-4/7 | | 28(x+2)=x-2 | | 500+60x=100x | | -38r=-190 | | 4m+3=4m+5 | | 103=5w+13 |